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Abstract
Safety is a desirable property that can immensely increase the applicability of
learning algorithms in real-world decision-making problems. It is much easier
for a company to deploy an algorithm that is safe, i.e., guaranteed to perform at
least as well as a baseline. In this paper, we study the issue of safety in contextual
linear bandits that have application in many different fields including personalized
recommendation. We formulate a notion of safety for this class of algorithms. We
develop a safe contextual linear bandit algorithm, called conservative linear UCB
(CLUCB), that simultaneously minimizes its regret and satisfies the safety con-
straint, i.e., maintains its performance above a fixed percentage of the performance
of a baseline strategy, uniformly over time. We prove an upper-bound on the regret
of CLUCB and show that it can be decomposed into two terms: 1) an upper-bound
for the regret of the standard linear UCB algorithm that grows with the time horizon
and 2) a constant term that accounts for the loss of being conservative in order to
satisfy the safety constraint. We empirically show that our algorithm is safe and
validate our theoretical analysis.

1 Introduction
Many problems in science and engineering can be formulated as decision-making problems under
uncertainty. Although many learning algorithms have been developed to find a good policy/strategy
for these problems, most of them do not provide any guarantee for the performance of their resulting
policy during the initial exploratory phase. This is a major obstacle in using learning algorithms in
many different fields, such as online marketing, health sciences, finance, and robotics. Therefore,
developing learning algorithms with safety guarantees can immensely increase the applicability of
learning in solving decision problems. A policy generated by a learning algorithm is considered to be
safe, if it is guaranteed to perform at least as well as a baseline. The baseline can be either a baseline
value or the performance of a baseline strategy. It is important to note that since the policy is learned
from data, it is a random variable, and thus, the safety guarantees are in high probability.

Safety can be studied in both offline and online scenarios. In the offline case, the algorithm learns
the policy from a batch of data, usually generated by the current strategy or recent strategies of the
company, and the question is whether the learned policy will perform as well as the current strategy or
no worse than a baseline value, when it is deployed. This scenario has been recently studied heavily
in both model-based (e.g., Petrik et al. [2016]) and model-free (e.g., Bottou et al. 2013; Thomas et
al. 2015a,b; Swaminathan and Joachims 2015a,b) settings. In the model-based approach, we first
use the batch of data and build a simulator that mimics the behavior of the dynamical system under
study (hospital’s ER, financial market, robot), and then use this simulator to generate data and learn
the policy. The main challenge here is to have guarantees on the performance of the learned policy,
given the error in the simulator. This line of research is closely related to the area of robust learning
and control. In the model-free approach, we learn the policy directly from the batch of data, without
building a simulator. This line of research is related to off-policy evaluation and control. While the
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model-free approach is more suitable for problems in which we have access to a large batch of data,
such as in online marketing, the model-based approach works better in problems in which data is
harder to collect, but instead, we have good knowledge about the underlying dynamical system that
allows us to build an accurate simulator.

In the online scenario, the algorithm learns a policy while interacting with the real system. Although
(reasonable) online algorithms will eventually learn a good or an optimal policy, there is no guarantee
for their performance along the way (the performance of their intermediate policies), especially at
the very beginning, when they perform a large amount of exploration. Thus, in order to guarantee
safety in online algorithms, it is important to control their exploration and make it more conservative.
Consider a manager that allows our learning algorithm runs together with her company’s current
strategy (baseline policy), as long as it is safe, i.e., the loss incurred by letting a portion of the traffic
handled by our algorithm (instead of by the baseline policy) does not exceed a certain threshold.
Although we are confident that our algorithm will eventually perform at least as well as the baseline
strategy, it should be able to remain alive (not terminated by the manager) long enough for this to
happen. Therefore, we should make it more conservative (less exploratory) in a way not to violate the
manager’s safety constraint. This setting has been studied in the multi-armed bandit (MAB) [Wu et
al., 2016]. Wu et al. [2016] considered the baseline policy as a fixed arm in MAB, formulated safety
using a constraint defined based on the performance of the baseline policy (mean of the baseline arm),
and modified the UCB algorithm [Auer et al., 2002] to satisfy this constraint.

In this paper, we study the notion of safety in contextual linear bandits, a setting that has application
in many different fields including personalized recommendation. We first formulate safety in this
setting, as a constraint that must hold uniformly in time, in Section 2. Our goal is to design learning
algorithms that minimize regret under the constraint that at any given time, their expected sum of
rewards should be above a fixed percentage of the expected sum of rewards of the baseline policy.
This fixed percentage depends on the amount of risk that the manager is willing to take. In Section 3,
we propose an algorithm, called conservative linear UCB (CLUCB), that satisfies the safety constraint.
At each round, CLUCB plays the action suggested by the standard linear UCB (LUCB) algorithm
(e.g., Dani et al. 2008; Rusmevichientong and Tsitsiklis 2010; Abbasi-Yadkori et al. 2011; Chu et
al. 2011; Russo and Van Roy 2014), only if it satisfies the safety constraint for the worst choice of
the parameter in the confidence set, and plays the action suggested by the baseline policy, otherwise.
We prove an upper-bound for the regret of CLUCB, which can be decomposed into two terms. The
first term is an upper-bound on the regret of LUCB that grows at the rate

√
T log(T ). The second

term is constant (does not grow with the horizon T ) and accounts for the loss of being conservative in
order to satisfy the safety constraint. This improves over the regret bound derived in Wu et al. [2016]
for the MAB setting, where the regret of being conservative grows with time. In Section 4, we show
how CLUCB can be extended to the case that the reward of the baseline policy is unknown without a
change in its rate of regret. Finally in Section 5, we report experimental results that show CLUCB
behaves as expected in practice and validate our theoretical analysis.

2 Problem Formulation

In this section, we first review the standard linear bandit setting and then introduce the conservative
linear bandit formulation considered in this paper.

2.1 Linear Bandit

In the linear bandit setting, at any time t, the agent is given a set of (possibly) infinitely many
actions/options At, where each action a ∈ At is associated with a feature vector φta ∈ Rd. At each
round t, the agent selects an action at ∈ At and observes a random reward yt generated as

yt = 〈θ∗, φtat〉+ ηt, (1)

where θ∗ ∈ Rd is the unknown reward parameter, 〈θ∗, φtat〉 = rtat is the expected reward of action at
at time t, i.e., rtat = E[yt], and ηt is a random noise such that

Assumption 1 Each element ηt of the noise sequence {ηt}∞t=1 is conditionally σ-sub-Gaussian,
i.e., E[eζηt | a1:t, η1:t−1] ≤ exp(ζ2σ2/2), ∀ζ ∈ R.

The sub-Gaussian assumption implies that E[ηt | a1:t, η1:t−1] = 0 and Var[ηt | a1:t, η1:t−1] ≤ σ2.
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Note that the above formulation contains time-varying action sets and time-dependent feature vectors
for each action, and thus, includes the linear contextual bandit setting. In linear contextual bandit, if
we denote by xt, the state of the system at time t, the time-dependent feature vector φta for action a
will be equal to φ(xt, a), the feature vector of state-action pair (xt, a).

We also make the following standard assumption on the unknown parameter θ∗ and feature vectors:

Assumption 2 There exist constants B,D ≥ 0 such that ‖θ∗‖2 ≤ B, ‖φta‖2 ≤ D, and 〈θ∗, φta〉 ∈
[0, 1], for all t and all a ∈ At.

We define B =
{
θ ∈ Rd : ‖θ‖2 ≤ B

}
and F =

{
φ ∈ Rd : ‖φ‖2 ≤ D, 〈θ∗, φ〉 ∈ [0, 1]

}
to be the

parameter space and feature space, respectively.

Obviously, if the agent knows θ∗, she will choose the optimal action a∗t = arg maxa∈At〈θ∗, φta〉 at
each round t. Since θ∗ is unknown, the agent’s goal is to maximize her cumulative expected rewards
after T rounds, i.e.,

∑T
t=1〈θ∗, φtat〉, or equivalently, to minimize its (pseudo)-regret, i.e.,

RT =

T∑
t=1

〈θ∗, φta∗t 〉 −
T∑
t=1

〈θ∗, φtat〉, (2)

which is the difference between the cumulative expected rewards of the optimal and agent’s strategies.

2.2 Conservative Linear Bandit

The conservative linear bandit setting is exactly the same as the linear bandit, except that there exists
a baseline policy πb (e.g., the company’s current strategy) that at each round t, selects action bt ∈ At
and incurs the expected reward rtbt = 〈θ∗, φtbt〉. We assume that the expected rewards of the actions
taken by the baseline policy, rtbt , are known (see Remark 1). We relax this assumption in Section 4
and extend our proposed algorithm to the case that the reward function of the baseline policy is not
known in advance. Another difference between the conservative and standard linear bandit settings is
the performance constraint, which is defined as follows:

Definition 1 (Performance Constraint) At each round t, the difference between the performances
of the baseline and the agent’s policies should remain below a pre-defined fraction α ∈ (0, 1) of the
baseline performance. This constraint may be written formally as

∀t ∈ {1, . . . , T},
t∑
i=1

ribi−
t∑
i=1

riai ≤ α
t∑
i=1

ribi or equivalently as
t∑
i=1

riai ≥ (1−α)

t∑
i=1

ribi . (3)

The parameter α controls the level of conservatism of the agent. Small values show that only small
losses are tolerated and the agent should be overly conservative, whereas large values indicate that
the manager is willing to take risk and the agent can be more explorative. Here, given the value of
α, the agent should select her actions in a way to both minimize her regret (2) and to satisfy the
performance constraint (3). In the next section, we propose a linear bandit algorithm to achieve this
goal with high probability.

Remark 1. Since the baseline policy is often our company’s strategy, it is reasonable to assume that
a large amount of data generated by this policy is available, and thus, we have an accurate estimate of
its reward function. If in addition to this accurate estimate, we have access to the actual data, we can
use them in our algorithms. The reason we do not use the data generated by the actions suggested by
the baseline policy in constructing the confidence sets of our algorithm in Section 3 is mainly to keep
the analysis simple. However, when dealing with the more general case of unknown baseline reward
in Section 4, we construct the confidence sets using all available data, including those generated by
the baseline policy. It is important to note that having a good estimate of the baseline reward function
does not necessarily mean that we know the unknown parameter θ∗. This is because the data used for
this estimate has been generated by the baseline policy, and thus, may only provide a good estimate
of θ∗ in a limited subspace.

3 A Conservative Linear Bandit Algorithm
In this section, we propose a linear bandit algorithm, called conservative linear upper confidence
bound (CLUCB), whose pseudocode is shown in Algorithm 1. CLUCB is based on the optimism
in the face of uncertainty principle, and given the value of α, minimizes the regret (2) and satisfies
the performance constraint (3) with high probability. At each round t, CLUCB uses the previous
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Algorithm 1 CLUCB

Input: α,B,F
Initialize: S0 = ∅, z0 = 0 ∈ Rd, and C1 = B
for t = 1, 2, 3, · · · do

Find (a′t, θ̃t) ∈ arg max(a,θ)∈At×Ct 〈θ, φta〉
Compute Lt = minθ∈Ct 〈θ, zt−1 + φta′t

〉
if Lt +

∑
i∈Sct−1

ribi ≥ (1− α)
∑t
i=1 r

i
bi

then
Play at = a′t and observe reward yt defined by (1)
Set zt = zt−1 + φtat , St = St−1 ∪ t, Sct = Sct−1
Given at and yt, construct the confidence set Ct+1 according to (5)

else
Play at = bt and observe reward yt defined by (1)
Set zt = zt−1, St = St−1, Sct = Sct−1 ∪ t, Ct+1 = Ct

end if
end for

observations and builds a confidence set Ct that with high probability contains the unknown parameter
θ∗. It then selects the optimistic action a′t ∈ arg maxa∈At maxθ∈Ct〈θ, φta〉, which has the best
performance among all the actions available in At, within the confidence set Ct. In order to make
sure that the constraint (3) is satisfied, the algorithm plays the optimistic action a′t, only if it satisfies
the constraint for the worst choice of the parameter θ ∈ Ct. To make this more precise, let St−1 be
the set of rounds i < t at which CLUCB has played the optimistic action, i.e., ai = a′i. Similarly,
Sct−1 = {1, 2, · · · , t − 1} − St−1 is the set of rounds j < t at which CLUCB has followed the
baseline policy, i.e., aj = bj .

In order to guarantee that it does not violate constraint (3), at each round t, CLUCB plays the
optimistic action, i.e., at = a′t, only if

min
θ∈Ct

[ ∑
i∈Sct−1

ribi +
〈
θ,

zt−1︷ ︸︸ ︷∑
i∈St−1

φiai

〉
+ 〈θ, φta′t〉

]
≥ (1− α)

t∑
i=1

ribi ,

and plays the conservative action, i.e., at = bt, otherwise. In the following, we describe how CLUCB
constructs and updates its confidence sets Ct.

3.1 Construction of Confidence Sets

CLUCB starts by the most general confidence set C1 = B and updates its confidence set only when it
plays an optimistic action. This is mainly to simplify the analysis and is based on the idea that since
the reward function of the baseline policy is known ahead of time, playing a baseline action does not
provide any new information about the unknown parameter θ∗. However, this can be easily changed
to update the confidence set after each action. In fact, this is what we do in the algorithm proposed in
Section 4. We follow the approach of Abbasi-Yadkori et al. [2011] to build confidence sets for θ∗.
Let St = {i1, . . . , imt} be the set of rounds up to and including round t at which CLUCB has played
the optimistic action. Note that we have defined mt = |St|. For a fixed value of λ > 0, let

θ̂t = (ΦtΦ
ᵀ
t + λI)

−1
ΦtYt, (4)

be the regularized least square estimate of θ at round t, where Φt = [φi1ai1 , . . . , φ
imt
aimt

] and Yt =

[yi1 , . . . , yimt ]
>. For a fixed confidence parameter δ ∈ (0, 1), we construct the confidence set for the

next round t+ 1 as
Ct+1 =

{
θ ∈ Rd : ‖θ − θ̂t‖Vt ≤ βt+1

}
, (5)

where βt+1 = σ

√
d log

(
1+(mt+1)D2/λ

δ

)
+
√
λB, Vt = λI + ΦtΦ

>
t , and the weighted norm is defined

as ‖x‖V =
√
x>V x for any x ∈ Rd and any positive definite V ∈ Rd×d. Note that similar to the linear

UCB algorithm (LUCB) in Abbasi-Yadkori et al. [2011], the sub-Gaussian parameter σ and the
regularization parameter λ that appear in the definitions of βt+1 and Vt should also be given to the
CLUCB algorithm as input. The following proposition (Theorem 2 in Abbasi-Yadkori et al. 2011)
shows that the confidence sets constructed by (5) contain the true parameter θ∗ with high probability.
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Proposition 1 For the confidence set Ct defined by (5), we have P
[
θ∗ ∈ Ct, ∀t ∈ N

]
≥ 1− δ.

As mentioned before, CLUCB ensures that performance constraint (3) holds for all θ ∈ Ct at all
rounds t. As a result, if all the confidence sets hold (i.e., contain the true parameter θ∗), CLUCB
is guaranteed to satisfy performance constraint (3). Proposition 1 indicates that this happens with
probability at least 1− δ. It is worth noting that satisfying constraint (3) implies that CLUCB is at
least as good as the baseline policy at all rounds. In this vein, Proposition 1 guarantees that, with
probability at least 1− δ, CLUCB performs no worse than the baseline policy at all rounds.

3.2 Regret Analysis of CLUCB

In this section, we prove a regret bound for the proposed CLUCB algorithm. Let ∆t
bt

= rta∗t − r
t
bt

be the baseline gap at round t, i.e., the difference between the expected rewards of the optimal and
baseline actions at round t. This quantity shows how sub-optimal the action suggested by the baseline
policy is at round t. We make the following assumption on the performance of the baseline policy πb.

Assumption 3 There exist 0 ≤ ∆l ≤ ∆h and 0 < rl such that, at each round t,

∆l ≤ ∆t
bt ≤ ∆h and rl ≤ rtbt . (6)

An obvious candidate for both ∆h and rh is 1, as all the mean rewards are confined in [0, 1]. The
reward lower-bound rl ensures that the baseline policy maintains a minimum level of performance at
each round. Finally, ∆l = 0 is a reasonable candidate for the lower-bound of the baseline gap.

The following proposition shows that the regret of CLUCB can be decomposed into the regret of
a linear UCB (LUCB) algorithm (e.g., Abbasi-Yadkori et al. 2011) and a regret caused by being
conservative in order to satisfy the performance constraint (3).

Proposition 2 The regret of CLUCB can be decomposed into two terms as follows:

RT (CLUCB) ≤ RST (LUCB) + nT∆h, (7)

where RST (LUCB) is the cumulative (pseudo)-regret of LUCB at rounds t ∈ ST and nT = |ScT | =
T −mT is the number of rounds (in T rounds) at which CLUCB has played a conservative action.

Proof: From the definition of regret (2), we have

RT (CLUCB) =

T∑
t=1

rta∗t −
T∑
t=1

rtat =
∑
t∈ST

(rta∗t −r
t
at)+

∑
t∈Sc

T

∆tbt︷ ︸︸ ︷
(rta∗t − r

t
bt) ≤

∑
t∈ST

(rta∗t −r
t
at)+nT∆h. (8)

The result follows from the fact that for t ∈ ST , CLUCB plays the exact same actions as LUCB, and
thus, the first term in (8) represents LUCB’s regret for these rounds. �

The regret bound of LUCB for the confidence set (5) can be derived from the results of Abbasi-
Yadkori et al. [2011]. Let E be the event that θ∗ ∈ Ct, ∀t ∈ N, which according to Proposition 1
holds w.p. at least 1− δ. The following proposition provides a bound on RST (LUCB). Since this
proposition is a direct application of Thm. 3 in Abbasi-Yadkori et al. [2011], we omit its proof here.

Proposition 3 On event E = {θ∗ ∈ Ct, ∀t ∈ N}, for any T ∈ N, we have

RST (LUCB) ≤ 4

√
mT d log

(
λ+

mTD

d

)
×
[
B
√
λ+ σ

√
2 log(

1

δ
) + d log

(
1 +

mTD

λd

)]
= O

(
d log

(
D

λδ
T

)√
T

)
. (9)

Now in order to bound the regret of CLUCB, we only need to find an upper-bound on nT , i.e., the
number of times that CLUCB deviates from LUCB and selects the action suggested by the baseline
policy. We prove an upper-bound on nT in Theorem 4, which is the main technical result of this
section. Due to space constraint, we only provide a proof sketch for Theorem 4 in the paper and
report its detailed proof in Appendix A. The proof requires several technical lemmas that have been
proved in Appendix C.
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Theorem 4 Let λ ≥ max(1, D2). Then, on event E , for any horizon T ∈ N, we have

nT ≤ 1 + 114d2
(B
√
λ+ σ)2

αrl(∆l + αrl)

[
log

(
62d(B

√
λ+ σ)√

δ(∆l + αrl)

)]2
.

Proof Sketch: Let τ = max
{

1 ≤ t ≤ T | at 6= a′t
}

be the last round that CLUCB takes an action
suggested by the baseline policy. We first show that at round τ , the following holds:

α

τ∑
t=1

rtbt ≤ −(mτ−1 + 1)∆l + 2βτ
∥∥φτa′τ ∥∥V−1

τ
+ 2

∑
t∈Sτ−1

βt
∥∥φtat∥∥V−1

t
+ 2βτ

∥∥∥∥∥∥φτa′τ +
∑

t∈Sτ−1

φtat

∥∥∥∥∥∥
V−1
τ

.

Next, using Lemmas 7 and 8 (reported in Appendix C), and the Cauchy-Schwartz inequality, we
deduce that

α

τ∑
t=1

rtbt ≤ −(mτ−1 + 1)∆l + 8d(B
√
λ+ σ) log

(
2(mτ−1 + 1)

δ

)√
(mτ−1 + 1).

Since rtbt ≥ rl for all t, and τ = nτ−1 +mτ−1 + 1, it follows that

αrlnτ−1 ≤ −(mτ−1 + 1)(∆l + αrl) + 8d(B
√
λ+ σ) log

(
2(mτ−1 + 1)

δ

)√
(mτ−1 + 1). (10)

Note that nτ−1 and mτ−1 appear on the LHS and RHS of (10), respectively. The key point is that
the RHS is positive only for a finite number of integers mτ−1, and thus, it has a finite upper bound.
Using Lemma 9 (reported and proved in Appendix C), we prove that

αrlnτ−1 ≤ 114d2 (B
√
λ+ σ)2

∆l + αrl
×

[
log

(
62d(B

√
λ+ σ)√

δ(∆l + αrl)

)]2

.

Finally, the fact that nT = nτ = nτ−1 + 1 completes the proof. �

We now have all the necessary ingredients to derive a regret bound on the performance of the CLUCB
algorithm. We report the regret bound of CLUCB in Theorem 5, whose proof is a direct consequence
of the results of Propositions 2 and 3, and Theorem 4.

Theorem 5 Let λ ≥ max(1, D2). With probability at least 1− δ, the CLUCB algorithm satisfies the
performance constraint (3) for all t ∈ N, and has the regret bound

RT (CLUCB) = O

(
d log

(DT
λδ

)√
T +

K∆h

αrl

)
, (11)

where K is a constant that only depends on the parameters of the problem as

K = 1 + 114d2
(B
√
λ+ σ)2

∆l + αrl

[
log

(
62d(B

√
λ+ σ)√

δ(∆l + αrl)

)]2
.

Remark 2. The first term in the regret bound (11) is the regret of LUCB, which grows at the rate√
T log(T ). The second term accounts for the loss incurred by being conservative in order to satisfy

the performance constraint (3). Our results indicate that this loss does not grow with time (since
CLUCB acts conservatively only in a finite number of rounds). This is a clear improvement over
the regret bound reported in Wu et al. [2016] for the MAB setting, in which the regret of being
conservative grows with time. Furthermore, the regret bound of Theorem 5 clearly indicates that
CLUCB’s regret is larger for smaller values of α. This perfectly matches the intuition that the agent
must be more conservative, and thus, suffers higher regret for smaller values of α. Theorem 5 also
indicates that CLUCB’s regret is smaller for smaller values of ∆h, because when the baseline policy
πb is close to optimal, the algorithm does not lose much by being conservative.
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Algorithm 2 CLUCB2

Input: α, rl,B,F
Initialize: n← 0, z ← 0, w ← 0, v ← 0 and C1 ← B
for t = 1, 2, 3, · · · do

Let bt be the action suggested by πb at round t
Find (a′t, θ̃) = arg max(a,θ)∈At×Ct 〈θ, φta〉
Find Rt = maxθ∈Ct〈θ, v+φtbt〉 & Lt = minθ∈Ct〈θ, z+φta′t

〉+αmax
{

minθ∈Ct〈θ, w〉, nrl
}

if Lt ≥ (1− α)Rt then
Play at = a′t and observe yt defined by (1)
Set z ← z + φta′t

and v ← v + φtbt
else

Play at = bt and observe yt defined by (1)
Set w = w + φtbt and n← n+ 1

end if
Given at and yt, construct the confidence set Ct+1 according to (15)

end for

4 Unknown Baseline Reward

In this section, we consider the case where the expected rewards of the actions taken by the baseline
policy, rtbt , are unknown at the beginning. We show how the CLUCB algorithm presented in Section 3
should be changed to handle this case, and present a new algorithm, called CLUCB2. We prove a
regret bound for CLUCB2, which is at the same rate as that for CLUCB. This shows that the lack of
knowledge about the reward function of the baseline policy does not hurt our algorithm in terms of
the rate of the regret. The pseudocode of CLUCB2 is shown in Algorithm 2. The main difference
with CLUCB is in the condition that should be checked at each round t to see whether we should
play the optimistic action a′t or the conservative action bt. This condition should be selected in a way
that CLUCB2 satisfies constraint (3). We may rewrite (3) as∑

i∈St−1

riai + rta′t + α
∑

i∈Sct−1

ribi ≥ (1− α)
(
rtbt +

∑
i∈St−1

ribi
)
. (12)

If we lower-bound the LHS and upper-bound the RHS of (12), we obtain

min
θ∈Ct
〈θ,

∑
i∈St−1

φiai + φta′t〉+ αmin
θ∈Ct
〈θ,

∑
i∈Sct−1

φibi〉 ≥ (1− α) max
θ∈Ct

〈θ,
∑

i∈St−1

φibi + φtbt〉. (13)

Since each confidence set Ct is built in a way to contain the true parameter θ∗ with high probability,
it is easy to see that (12) is satisfied whenever (13) is true.

CLUCB2 uses both optimistic and conservative actions, and their corresponding rewards in building
its confidence sets. Specifically for any t, we let Φt = [φ1a1 , φ

2
a2 , · · · , φ

t
at ], Yt = [y1, y2, · · · , yt]ᵀ,

Vt = λI + Φᵀ
tΦt, and define the least-square estimate after round t as

θ̂t = (ΦtΦ
ᵀ
t + λI)

−1
ΦtYt. (14)

Given Vt and θ̂t, the confidence set for round t+ 1 is constructed as

Ct+1 =
{
θ ∈ Ct : ‖θ − θ̂t‖Vt ≤ βt+1

}
, (15)

where C1 = B and βt = σ

√
d log

(
1+tD2/λ

δ

)
+ B
√
λ. Similar to Proposition 1, we can easily

prove that the confidence sets built by (15) contain the true parameter θ∗ with high probability,
i.e., P

[
θ∗ ∈ Ct, ∀t ∈ N

]
≥ 1− δ.

Remark 3. Note that unlike the CLUCB algorithm, here we build nested confidence sets, i.e., · · · ⊆
Ct+1 ⊆ Ct ⊆ Ct−1 ⊆ · · · , which is necessary for the proof of the algorithm. This can potentially
increase the computational complexity of CLUCB2, but from a practical point of view, the confidence
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Figure 1: Average per-step regret (over 1, 000 runs) of LUCB and CLUCB for different values of α.

sets become nested automatically after sufficient data has been observed. Therefore, the nested
constraint in building the confidence sets can be relaxed after sufficiently large number of rounds.

The following theorem guarantees that CLUCB2 satisfies the safety constraint (3) with high probabil-
ity, while its regret has the same rate as that of CLUCB and is worse than that of LUCB only up to an
additive constant.

Theorem 6 Let λ ≥ max(1, D2) and δ ≤ 2/e. Then, with probability at least 1 − δ, CLUCB2
algorithm satisfies the performance constraint (3) for all t ∈ N, and has the regret bound

RT (CLUCB2) = O

(
d log

(
DT

λδ

)√
T +

K∆h

α2r2l

)
, (16)

where K is a constant that depends only on the parameters of the problem as

K = 256d2(B
√
λ+ σ)2

[
log

(
10d(B

√
λ+ σ)

αrl(δ)1/4

)]2
+ 1.

We report the proof of Theorem 6 in Appendix B. The proof follows the same steps as that of
Theorem 5, with additional non-trivial technicalities that have been highlighted there.

5 Simulation Results
In this section, we provide simulation results to illustrate the performance of the proposed CLUCB
algorithm. We considered a time independent action set of 100 arms each having a time independent
feature vector living in R4 space. These feature vectors and the parameter θ∗ are randomly drawn
fromN

(
0, I4

)
such that the mean reward associated to each arm is positive. The observation noise at

each time step is also generated independently from N (0, 1), and the mean reward of the baseline
policy at any time is taken to be the reward associated to the 10’th best action. We have taken
λ = 1, δ = 0.001 and the results are averaged over 1,000 realizations.

In Figure 1, we plot per-step regret (i.e., Rtt ) of LUCB and CLUCB for different values of α over
a horizon T = 40, 000. Figure 1 shows that per-step regret of CLUCB remains constant at the
beginning (the conservative phase). This is because during this phase, CLUCB follows the baseline
policy to make sure that the performance constraint (3) is satisfied. As expected, the length of the
conservative phase decreases as α is increased, since the performance constraint is relaxed for larger
values of α, and hence, CLUCB starts playing optimistic actions more quickly. After this initial
conservative phase, CLUCB has learned enough about the optimal action and its performance starts
converging to that of LUCB. On the other hand, Figure 1 shows that per-step regret of CLUCB at the
first few periods remains much lower than that of LUCB. This is because LUCB plays agnostic to the
safety constraint, and thus, may select very poor actions in its initial exploration phase. In regard
to this, Figure 2(a) plots the percentage of the rounds, in the first 1, 000 rounds, at which the safety
constraint (3) is violated by LUCB and CLUCB for different values of α. According to this figure,
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(a) (b)

Figure 2: (a) Percentage of the rounds, in the first 1, 000 rounds, at which the safety constraint is
violated by LUCB and CLUCB for different values of α, (b) Per-step regret of LUCB and CLUCB
for different values of α, at round t = 40, 000.

CLUCB satisfies the performance constraint for all values of α, while LUCB fails in a significant
number of rounds, specially for small values of α (i.e., tight constraint).

To better illustrate the effect of the performance constraint (3) on the regret of the algorithms,
Figure 2(b) plots the per-step regret achieved by CLUCB at round t = 40, 000 for different values of
α, as well as that for LUCB. As expected from our analysis and is shown in Figure 1, the performance
of CLUCB converges to that of LUCB after an initial conservative phase. Figure 2(b) confirms that
the convergence happens more quickly for larger values of α, where the constraint is more relaxed.

6 Conclusions

In this paper, we studied the concept of safety in contextual linear bandits to address the challenges that
arise in implementing such algorithms in practical situations such as personalized recommendation
systems. Most of the existing linear bandit algorithms, such as LUCB [Abbasi-Yadkori et al., 2011],
suffer from a large regret at their initial exploratory rounds. This unsafe behavior is not acceptable
in many practical situations, where having a reasonable performance at any time is necessary for a
learning algorithm to be considered reliable and to remain in production.

To guarantee safe learning, we formulated a conservative linear bandit problem, where the per-
formance of the learning algorithm (measured in terms of its cumulative rewards) at any time is
constrained to be at least as good as a fraction of the performance of a baseline policy. We proposed
a conservative version of LUCB algorithm, called CLUCB, to solve this constrained problem, and
showed that it satisfies the safety constraint with high probability, while achieving a regret bound
equivalent to that of LUCB up to an additive time-independent constant. We designed two versions of
CLUCB that can be used depending on whether the reward function of the baseline policy is known or
unknown, and showed that in each case, CLUCB acts conservatively (i.e., plays the action suggested
by the baseline policy) only at a finite number of rounds, which depends on how suboptimal the
baseline policy is. We reported simulation results that support our analysis and show the performance
of the proposed CLUCB algorithm.
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Y. Wu, R. Shariff, T. Lattimore, and C. Szepesvári. Conservative bandits. In Proceedings of The 33rd
International Conference on Machine Learning, pages 1254–1262, 2016.

10


