
A Fast and Reliable Policy Improvement Algorithm

Yasin Abbasi-Yadkori Peter L. Bartlett Stephen J. Wright
Queensland University of Technology UC Berkeley and QUT University of Wisconsin-Madison

Abstract

We introduce a simple, efficient method that
improves stochastic policies for Markov de-
cision processes. The computational com-
plexity is the same as that of the value es-
timation problem. We prove that when the
value estimation error is small, this method
gives an improvement in performance that in-
creases with certain variance properties of the
initial policy and transition dynamics. Per-
formance in numerical experiments compares
favorably with previous policy improvement
algorithms.

1 Introduction

Markov decision problems (MDPs) are sequential de-
cision problems where loss has memory (also known as
state). The objective is to find a policy—a mapping
from states to actions—that yields high discounted
cumulative reward. In large-state problems, finding
an optimal policy is challenging and one has to re-
sort to approximations. Unfortunately, many approx-
imate MDP algorithms do not always improve mono-
tonically. We propose a computationally efficient al-
gorithm and show that it generates a sequence of in-
creasingly better policies.

We consider MDPs with finite state and action spaces,
and a reward function r defined on the state space.
The distribution of the state at time t+1 is a function
of the state xt and action at at the previous time t.
We define a transition matrix P , with rows indexed by
state-action pairs and columns indexed by subsequent
states, so that P(xt,at) is the vector of probabilities
of state xt+1. A policy π is a mapping from states to
probability distributions over actions. We write π(a|x)

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

as the probability of action a in state x under policy
π. (We also use π(xt) to denote the random action
at distributed according to π(·|xt).) For starting state
x0, the value function corresponding to π is defined by

Vπ(x0) = E

[∞∑
t=0

γtr(xt)

]
, (1)

where γ ∈ (0, 1) is a discount factor, xt is the state
at time t, and at ∼ π(·|xt). The expectation is over
the stochasticity in the policy and in the evolution of
states. The objective is to find a policy π such that the
total cumulative loss Vπ(x0) is near-optimal. (The op-
timal policy is the one for which Vπ(x0) is maximized.)
We assume that the reward function is bounded in
[0, (1− γ)b] for some b ∈ (0, 1).

There is a vast literature on Markov decision problems
and reinforcement learning (RL) (Sutton and Barto,
1998, Bertsekas and Tsitsiklis, 1996). Dynamic pro-
gramming (DP) algorithms, such as value iteration
and policy iteration, are standard techniques for com-
puting the optimal policy. In large state space prob-
lems, exact DP is not feasible, because the compu-
tational complexity scales at least quadratically with
the number of states. In such problems, the opti-
mal value function can be approximated with a linear
combination of a small number of features, with the
understanding that searching in this low dimensional
subspace is easier than solving the original problem.
Unlike exact DP, approximate DP does not necessar-
ily improve the policy in each iteration (Kakade and
Langford, 2002).

Given a stochastic policy π̃, our method finds an es-
timate V̂π̃ for its value, and returns an improved pol-
icy π̂ such that Vπ̂(x0) ≥ Vπ̃(x0) − E(V̂π̃, Vπ̃) + ∆ for

some policy evaluation error E(V̂π̃, Vπ̃) and some posi-
tive scalar ∆. Our performance bounds are composed
of a policy evaluation (PE) error term and a positive
policy improvement (PI) term. The main advantage of
both our method and CPI, by comparison with API, is
that we can obtain strict policy improvement as long
as the PI term is bigger than the PE term. If the PE
error is very large, our algorithm might fail to improve
the policy. The same is true of the CPI approach of

A Fast and Reliable Policy Improvement Algorithm

Kakade and Langford (2002). Value estimates how-
ever are needed only at the states that the agent visits
under the policy. Estimates can be obtained by per-
forming roll-outs from the current state. By choosing
the number of roll-outs appropriately, we can control
the accuracy of these estimates, and thus ensure pol-
icy improvement. For API, the performance is only
guaranteed to not degrade by more than the PE error.

The policy π̂ is randomized, assigning larger probabili-
ties to actions with larger value estimates. The closest
to our work is Conservative Policy Iteration (CPI) of
Kakade and Langford (2002) that uses an approximate
greedy update. Pirotta et al. (2013) study several ex-
tensions of CPI. Thomas et al. (2015) propose a differ-
ent approach that guarantees safe policy improvement,
but the computational complexity of their method is
high.

Our contributions are as follows: (1) We propose a
policy iteration scheme that makes a step towards the
greedy policy, however unlike CPI, the mixture coef-
ficients are state-dependent and unlike Pirotta et al.
(2013), these state-dependent coefficients can be com-
puted efficiently. (2) We analyze the proposed algo-
rithm and show that its performance improvement is
larger than that of CPI. While the improvement in
CPI has the form of the quadratic of an expectation,
our improvement has the form of the expectation of
quadratics. Moreover, the mixture coefficients can be
significantly larger in our updates, making our algo-
rithm practical while guaranteed to improve the initial
policy. (3) We study the proposed algorithm numer-
ically on chain-walk and inverted-pendulum bench-
marks, showing that it performs well in these domains.

1.1 Notation

The expectation of a random variable z with re-
spect to a distribution v is denoted by Evz =∑
p v(p)z(p), where summation is over the countable

domain of z. For a policy π, we write Eπ(·|x)z =∑
a π(a|x)z(x, a) and Eπ(·|x)Pz =

∑
a π(a|x)P(x,a)z.

Similarly, Varπ(·|x)z = Eπ(·|x)z
2 − (Eπ(·|x)z)

2. Vari-
ables z and y can be scalars, vectors, or matrices. We
use Pπ to denote the probability transition matrix un-
der policy π. We use Lπ to denote the Bellman opera-
tor: for any V ∈ RX , (LπV)(x) =

∑
a π(a|x)(r(x, a) +

γP(x,a)V). 1

2 Algorithm

We assume that reward is independent of the action.
From here on, we use r(x) to represent r(x, a), since
the reward is independent of a in A. Fix a constant

1For any V ∈ RX , P(x,a)V =
∑
x′ P (x′|x, a)V (x′).

b < 1 and scale rewards such that r(x) ∈ [0, (1− γ)b].
This implies that Vπ(x) ∈ (0, b) for any policy π and
state x. We say a function V ∈ RX is a consistent
value estimate if for any state x,

min
a

(r(x) + γP(x,a)V) ≤ V (x)

≤ max
a

(r(x) + γP(x,a)V) .

Let π̃ be an arbitrary policy. Let Vπ̃ ∈ RX be the
value of π̃. Let V̂π̃ ∈ RX be an approximation of Vπ̃,
and define Q̂π̃(x, a) = r(x) + γP(x,a)V̂π̃. First, check if

V̂π̃ is a consistent value estimate:

min
a
Q̂π̃(x, a) ≤ V̂π̃(x) ≤ max

a
Q̂π̃(x, a) . (2)

If (2) holds, find policy ν such that

V̂π̃(x) = Eν(·|x)Q̂π̃(x, ·) + Varν(·|x)Q̂π̃(x, ·) . (3)

Otherwise find policy ν such that

Eπ̃(·|x)Q̂π̃(x, ·) = Eν(·|x)Q̂π̃(x, ·) + Varν(·|x)Q̂π̃(x, ·) .
(4)

Equation (4) always has a solution ν. If we choose
ν = π̃, then LHS is no more than RHS. On the
other hand, if ν assigns all the probability mass to
argmina Q̂π̃(x, a), then Varν(·|x)Q̂π̃(x, ·) = 0 and LHS
is no less than RHS. As RHS is a continuous func-
tion in ν, the above equation has a solution and at
least one solution is a convex combination of π̃(·|x)

and 1
{

argmina Q̂π̃(x, a)
}

. Similarly, (3) has a solu-

tion under condition (2). Because of monotonicity, the
solution can be found efficiently by a binary search.

Let
∆π̃(x, a) = Q̂π̃(x, a)−Eν(·|x)Q̂π̃(x, ·)

and π(a|x) = ν(a|x)(1 + ∆π̃(x, a)). Inclusion of the

term Eν(·|x)Q̂π̃(x, ·) ensures that the probabilities sum
to one:

∑
a∈A π(a|x) = 1 for all x ∈ X . In the absence

of estimation error, that is, V̂π̃ = Vπ̃, it can be shown
that LπVπ̃ = Vπ̃. (See Lemma 2.) Although π might
be different from π̃, it has the same value function
Vπ = Vπ̃.

Let F (π̃) = maxx,a |∆π̃(x, a)|. Choose s = 1/F (π̃)
and define the policy2

π̂(a|x) = ν(a|x)(1 + s∆π̃(x, a)) . (5)

2If ∆π̃(x, a) = 0 for all x and a, we use the convention
that 0× 1/0 = 0. If we do not have access to a good esti-

mate of F (π̃), choose s = 1/(γmaxx V̂π̃(x)). This ensures

that γ(Px,aV̂π̃)s ≤ 1. If we do not have access to a good

estimate of maxx V̂π̃(x), then we can use the more conser-
vative choice of s = 1/(γb). In practice, when estimating

F (π̃) and maxx V̂π̃(x) is hard, we start from a large value
of s and decrease it when we observe a negative π̂ value.

Yasin Abbasi-Yadkori, Peter L. Bartlett, Stephen J. Wright

Input: Policy π̃, constant s;
for t = 1, 2, . . . do

Observe state xt;
Estimate V̂π̃(xt) and Q̂π̃(xt, a) for a ∈ A;
if Inequality (2) holds then

Obtain ν(·|x) such that (3) is satisfied;
else

Obtain ν(·|x) such that (4) is satisfied;
end if
Take action a sampled according to
π̂(a|xt) := ν(a|xt)(1 + s∆π̃(xt, a)), where
s is defined in the text;

end for

Figure 1: Linearized Policy Improvement Algorithm.

The definition of s ensures that π̂(a|x) ≥ 0 for all x
and a. In summary, we reshape policy π̃ and obtain
π that has the same value function. Then π̂(a|x) is
obtained by increasing the probability of actions with
positive ∆π̃(x, a). We calculate ν(·|x) only when we
visit state x. So we do not need to perform these calcu-
lations for all states beforehand. We call the resulting
algorithm the LPI algorithm for “Linearized Policy
Improvement”. Pseudo-code of the algorithm is given
in Figure 1.

Let I(V) be the set of states such that V is a consistent
value estimate. In Theorem 4, we show that for any
starting state distribution c ∈ RX , we have

c>Vπ̂ − c>Vπ̃ ≥ c>(V̂π̃ − Vπ̃) +
B(s− 1)

2
(6)

−
∑

x/∈I(V̂π̃)

vπ̂,c(x)
∣∣∣Eπ̃(·|x)Q̂π̃(x, ·)− V̂π̃(x)

∣∣∣ ,
where v>π̂,c = c>

∑∞
t=0 γ

t(P π̂)t and

B = 2
∑
x

vπ̂,c(x)Varν(·|x)Q̂π̃(x, ·) .

In particular, if V̂π̃ = Vπ̃, then

c>Vπ̂ ≥ c>Vπ̃ +B(s− 1)/2 .

All quantities on the RHS can be estimated by roll-
outs, which provides an efficient way to estimate policy
improvement.

We can iterate the procedure of Figure 1 to improve
the policy. The resulting algorithm, called “Iterative
LPI” or ILPI, is shown in Figure 2.

Our update rule (5) has similarities with the CPI rule
of Kakade and Langford (2002), although it is not

Input: Initial policy π1, constant s, time
horizon T ;
for i = 1, 2, . . . , I do

Run policy πi for T steps;
Estimate V̂πi ;
Obtain ν from (3) or (4);
Define the new policy for all x, a:
πi+1(a|x) := ν(a|x)(1 + s∆πi(x, a)),
where s is defined in the text;

end for

Figure 2: Iterative LPI Algorithm.

a convex combination of the current policy and the
greedy policy. Also, unlike CPI, our update is non-
uniform across the state space. Update rule (5) makes
small changes to the current policy when there are
small differences in Q̂π̃ values, and larger changes when
the differences in Q̂π̃ values are more substantial. In-
terestingly, our theorem also reflects this; our theoret-
ical improvement is more significant compared to CPI
when differences in Q̂π̃ values vary across the state
space. (See Section 2.3, where we show that our algo-
rithm enjoys stronger performance guarantees.)

Policy improvement in (6) depends on the error in esti-
mating the value of the previous policy π̃. An effective
way to keep this error small is to perform roll-outs in
states that we visit under policy π̂. Unfortunately, the
computational cost increases exponentially with the
number of iterations I in the ILPI algorithm, mak-
ing this approach effective only when I is small. An
alternative approach, which we use in our inverted-
pendulum experiments in Section 3, is to estimate V̂πi
by a linear combination of columns of a feature ma-
trix: V̂πi ≈ Φθ, where Φ ∈ RX×d is a feature matrix
and θ ∈ Rd is a parameter vector. For example, we
can use the value iteration algorithm to estimate θ:

θ0 = 0 ,

θk+1 =

(∑
x∈S

Φ(x)>Φ(x)

)−1∑
x∈S

Φ(x)>tk(x, πi(x)) ,

where S is a set of states visited while running policy
πi and tk(x, a) = r(x)+γP(x,a)Φθ

k. Notice that in our
performance guarantee (6), there is no estimation error

in states where V̂πi is a consistent value estimate. For
this reason, we propose the following modified proce-
dure where target values are thresholded with appro-
priate min/max values:

θk+1 =

(∑
x∈S

Φ(x)>Φ(x)

)−1∑
x∈S

Φ(x)>yk(x, πi(x)) ,

A Fast and Reliable Policy Improvement Algorithm

where yk(x, a) = r(x) + γP(x,a)z
k and

zk(x) =


mina t

k(x, a) if Φ(x)θk < mina t
k(x, a)

maxa t
k(x, a) if Φ(x)θk > maxa t

k(x, a)

Φ(x)θk otherwise.

2.1 Analysis

In this section, we show a performance bound for the
LPI algorithm. We start with a useful lemma that
expresses the objective c>Vπ in terms of c>V and a
Bellman error. The lemma is from Kakade and Lang-
ford (2002). Its proof can also be extracted from the
proof of Theorem 1 of de Farias and Van Roy (2003).

Lemma 1 (Kakade and Langford (2002)). Fix a policy
π and vectors V, c ∈ RX . Let Pπ denote the probability
transition kernel under policy π. Define the measure

v>π,c = c>
∞∑
t=0

γt(Pπ)t = c>(I − γPπ)−1 . (7)

We have

c>Vπ = c>V + v>π,c(LπV − V) . (8)

Lemma 2. Consider the policy

π(a|x) = ν(a|x)(1 + Q̂π̃(x, a)−Eν(·|x)Q̂π̃(x, ·)) .

Under Condition (3), we have (LπV̂π̃)(x) = V̂π̃(x)

and under Condition (4), we have (LπV̂π̃)(x) =

Eπ̃(·|x)Q̂π̃(x, ·).

Proof. First consider Condition (4). We want to show
that for state x,

Eπ̃(·|x)Q̂π̃(x, ·) =∑
a

ν(a|x)(1 + Q̂π̃(x, a)−Eν(·|x)Q̂π̃(x, ·))Q̂π̃(x, a).

This implies that

Eπ̃(·|x)Q̂π̃(x, ·) = Eν(·|x)Q̂π̃(x, ·) + Eν(·|x)Q̂
2
π̃(x, ·)

− (Eν(·|x)Q̂π̃(x, ·))2

= Eν(·|x)Q̂π̃(x, ·) + Varν(·|x)Q̂π̃(x, ·).

This last equality holds by Condition (4). We have a
similar argument when Condition (3) holds.

Lemma 3. Let πw(a|x) = ν(a|x)(1 + ∆π̃(x, a)w).
Consider the function

h(w) = c>(V̂π̃w) + v>π̂,c(Lπw(V̂π̃w)− V̂π̃w) .

Then h(w) = 1
2Bw

2 + gw + f where

f = v>π̂,cr ,

g = c>V̂π̃ − v>π̂,cV̂π̃ + γv>π̂,c(P
ν V̂π̃) ,

B = 2
∑
x

vπ̂,c(x)Varν(·|x)Q̂π̃(x, ·) .

The proof is in Appendix A. The main result of this
section is as follows.

Theorem 4. Let I(V) be the set of states such that
V is a consistent value estimate (as defined in the be-
ginning of this section). For any starting state distri-
bution c,

c>Vπ̂ ≥ c>Vπ̃ + c>(V̂π̃ − Vπ̃) +
B(s− 1)

2

−
∑

x/∈I(V̂π̃)

vπ̂,c(x)
∣∣∣Eπ̃(·|x)Q̂π̃(x, ·)− V̂π̃(x)

∣∣∣ .
Proof. Recall the definition of πw and h(w) from
Lemma 3. Notice that πs = π̂. The function h(w)
can be written as

h(w) = c>(V̂π̃w) +
∑
x

vπ̂,c(x)

×

(∑
a

ν(a|x)(1 + w∆π̃(x, a))(r(x) + γP(x,a)V̂π̃w)

− V̂π̃w

)
.

We have that

h(0) = v>π̂,cr = c>(I − γP π̂)−1r = c>Vπ̂ ,

where the second equality holds by definition of vπ̂,c
in Lemma 1. If we set V = V̂π̃s and π = π̂ = πs, then
it is apparent by comparing (8) with the definition of
h(·) in Lemma 3 that h(s) = cTVπ̂. Thus, h(0) = h(s).
On the other hand,

h(1) = c>V̂π̃ +
∑
x

vπ̂,c(x)((LπV̂π̃)(x)− V̂π̃(x))

≥ c>Vπ̃ + c>(V̂π̃ − Vπ̃)

−
∑

x∈I(V̂π̃)

vπ̂,c(x)
∣∣∣(LπV̂π̃)(x)− V̂π̃(x)

∣∣∣
−

∑
x/∈I(V̂π̃)

vπ̂,c(x)
∣∣∣(LπV̂π̃)(x)− V̂π̃(x)

∣∣∣
= c>Vπ̃ + c>(V̂π̃ − Vπ̃)

−
∑

x/∈I(V̂π̃)

vπ̂,c(x)
∣∣∣Eπ̃(·|x)Q̂π̃(x, ·)− V̂π̃(x)

∣∣∣ .
where the last step holds by Lemma 2.

Because h is convex and 0 < 1 < s, h(1) ≤ h(s).
We can calculate the improvement: Write h in the
quadratic form h(w) = 1

2Bw
2 + gw + f , where B, g, f

are defined in Lemma 3. We know that h(s) = h(0) =
f . Thus the improvement is h(s)− h(1) = −g −B/2.
On the other hand, h(s) = Bs2/2 + gs + f = f and
so g = −Bs/2. Thus, h(s)− h(1) = B(s− 1)/2, from
which the theorem statement follows.

Yasin Abbasi-Yadkori, Peter L. Bartlett, Stephen J. Wright

2.2 Choosing s

As Theorem 4 suggests, a bigger value of s gives a
bigger policy improvement. On the other hand, the
analysis is valid as long as the probabilities π̂(a|x) =
ν(a|x)(1+s∆π̃(x, a)) are positive, and this prevents us
from choosing very large values of s. The next corol-
lary relaxes the positivity condition and shows that if
these probabilities are negative only in a small subset
of the state space, we can still have a policy improve-
ment.

Corollary 5. Let G be the set of “good” states where
ν(a|x)(1 + s∆π̃(x, a)) is positive and let B = X − G.
Define the policy

π′w(a|x) =

{
ν(a|x)(1 + w∆π̃(x, a)) if x ∈ G
ν(a|x)(1 + ∆π̃(x, a)) if x ∈ B

and π̂ = π′s. Let

B = 2
∑
x

vπ̂,c(x)Varν(·|x)Q̂π̃(x, ·) .

We have that

c>Vπ̂ ≥ c>Vπ̃ + c>(V̂π̃ − Vπ̃)

−
∑

x/∈I(V̂π̃)

vπ̂,c(x)
∣∣∣Eπ̃(·|x)Q̂π̃(x, ·)− V̂π̃(x)

∣∣∣
−
∑
x∈B

vπ̂,c(x)Varν(·|x)Q̂π̃(x, ·) +
B(s− 1)

2
.

Proof. Consider the function

h′(w) = c>(V̂π̃w) + v>π̂,c(Lπ′
w

(V̂π̃w)− V̂π̃w) .

Similar to the argument in the proof of Theorem 4,
we have that h′(0) = v>π̂,cr = c>Vπ̂ and h′(s) = c>Vπ̂.
Thus, h′(0) = h′(s). As before,

h′(1) ≥ c>Vπ̃ + c>(V̂π̃ − Vπ̃)

−
∑

x/∈I(V̂π̃)

vπ̂,c(x)
∣∣∣Eπ̃(·|x)Q̂π̃(x, ·)− V̂π̃(x)

∣∣∣ .
Let

B′ = 2
∑
x∈G

vπ̂,c(x)Varν(·|x)Q̂π̃(x, ·) .

The new h′ is also quadratic and can be written as
h′(w) = 1

2B
′w2 + g′w + f ′, for some g′ and f ′. We

know that h′(s) = h′(0) = f ′. Thus the improvement
is h′(s) − h′(1) = −g′ − B′/2. On the other hand,
h′(s) = B′s2/2 + g′s + f ′ = f ′ and so g′ = −B′s/2.
Thus,

h′(s)− h′(1) =
B′(s− 1)

2

=
B(s− 1)

2
−
∑
x∈B

vπ̂,c(x)Varν(·|x)Q̂π̃(x, ·) ,

from which the statement follows.

Input: Initial policy π1, negativity thresh-
old ε, time horizon T , initial s0;
for i = 1, 2, . . . , I do
s = s0;
repeat

Run policy πi for T steps;
Estimate Gi(s) using (9);
If Gi(s) > ε, set s = s/2;

until Gi(s) ≤ ε;
Estimate V̂πi ;
Obtain νi from (3) or (4);
Define new πi+1 based on Corollary 5;

end for

Figure 3: The Adaptive Iterative LPI Algorithm.

In particular, if
∑
x∈B(1−γ)vπ̂,c(x) ≤ ε for some small

ε, then

c>Vπ̂ ≥ c>Vπ̃ + c>(V̂π̃ − Vπ̃)− εb2

4(1− γ)
+
B(s− 1)

2

−
∑

x/∈I(V̂π̃)

vπ̂,c(x)
∣∣∣Eπ̃(·|x)Q̂π̃(x, ·)− V̂π̃(x)

∣∣∣ .
This argument motivates an adaptive procedure for
updating s: start from a big value of s and decrease it
only when the frequency of visits to bad states be-
comes larger than a threshold. The adaptive algo-
rithm, called AILPI, is shown in Figure 3. In the fig-
ure, πi is the ith policy, νi is the corresponding base
policy,

πi+1(a|x) =

{
νi(a|x)(1 + s0 ∆πi(x, a)) if x ∈ G
νi(a|x)(1 + ∆πi(x, a)) if x ∈ B,

Bi(s) = {x : ∃a, νi(a|x)(1 + s∆πi(x, a)) < 0}, and

Gi(s) =
∑

x∈Bi(s)

(1− γ)vπi,c(x) . (9)

To simplify the presentation, we estimate Gi(s) after
running a policy for a fixed number of rounds. We can
also design a version that updates the estimate in an
online fashion and decreases s as soon as the number
of visits to bad states becomes large.

2.3 Comparison with Conservative Policy
Iteration

Let us compare the performance bound in Theorem 4
with the performance bound of Conservative Policy
Iteration. To simplify the argument, we assume the
exact value functions are available and ν is the uniform

A Fast and Reliable Policy Improvement Algorithm

policy. Let

Qπ(x, a) = r(x) + γP(x,a)Vπ

be the state-action value of policy π and let

Aπ(x, a) = Qπ(x, a)− Vπ(x)

be the advantage function. Let gπ(x) =
argmaxaQπ(x, a) be the greedy policy with respect to
policy π and let Aπ

′

π (x) =
∑
a π
′(a|x)Aπ(x, a) be the

policy advantage of π′ with respect to π. Let

Ag = (1− γ)
∑
x

vπ̃,c(x)Agπ̃π̃ (x)

= (1− γ)
∑
x

vπ̃,c(x)(max
a

Qπ̃(x, a)− Vπ̃(x)) .

Let ECPI = A2
g/(8b). Kakade and Langford (2002)

propose Conservative Policy Iteration that uses an ap-
proximate greedy update

πCPI(a|x) = (1− α)π̃(a|x) + α1 {a = gπ̃(x)} (10)

for some α ∈ (0, 1). Kakade and Langford (2002) show
that using the choice of α = (1− γ)Ag/(4b),

c>VπCPI
≥ c>Vπ̃ + ECPI .

Let Nx = maxaQπ̃(x, a) − minaQπ̃(x, a) denote the
range of Qπ̃(x, ·). The CPI improvement can be upper
bounded by

ECPI ≤
1

8b
(
∑
x

(1− γ)vπ̃,c(x)Nx)2 .

Theorem 4 shows an improvement of

c>Vπ̂ = c>Vπ̃ +
B(s− 1)

2

= c>Vπ̃ + (s− 1)
∑
x

vπ̂,c(x)Varν(·|x)Qπ̃(x, ·) .

Define

ELPI
def
= (s− 1)

∑
x

vπ̂,c(x)Varν(·|x)Qπ̃(x, ·) .

Because ν is assumed to be uniform,
Varν(·|x)Qπ̃(x, ·) = N2

x/4. Thus, ELPI =
((s − 1)/4)

∑
x vπ̂,c(x)N2

x . Let’s choose b = γ
and s = 1/(bγ) (the most conservative choice of s).
Thus

ELPI ≥ (1− γ2)/(4γ2)
∑
x

vπ̂,c(x)N2
x .

Thus,

ELPI − ECPI ≥
1 + γ

4γ2

∑
x

(1− γ)vπ̂,c(x)N2
x

− 1

8γ

(∑
x

(1− γ)vπ̃,c(x)Nx

)2

.

A direct comparison is not possible because vπ̂,c is dif-
ferent from vπ̃,c. If we assume that vπ̂,c and vπ̃,c are
similar, by Jensen’s inequality, we expect ELPI to be
bigger than ECPI. We attribute this difference to the
fact that, unlike CPI, the mixture coefficient in our up-
date rule is not constant and depends on the state and
action. Even if Nx is uniform over the state space and
equal to a constant N , we still have an improvement:

ELPI − ECPI ≥
N2

4γ

(
1 + γ

γ
− 1

2

)
≥ 3N2

8γ
.

In practice, the recommended choice of α = (1 −
γ)Ag/(4b) leads to very conservative updates and very
slow progress (Scherrer, 2014). Often one needs to
choose much larger α to make CPI practical, but there
are no theoretical guarantees for such choices. Scher-
rer (2014) proposes doing a line search to find the best
α. But unlike our adaptive method, such a procedure
lacks a theoretical justification. As we show in experi-
ments, even our most conservative choice of s = 1/(bγ)
results in faster progress than CPI.

The above argument assumes a maximum variance for
ν. If π̃ is deterministic, then ν is also deterministic,
Varν(·|x)Qπ̃(x, ·) = 0, B = 0, and the performance
bound in Theorem 4 shows no improvements. CPI
does not have this restriction and can be applied with
initial deterministic policies. Also, we require rewards
to be action-independent, while CPI applies to more
general reward functions.

Let mπ = maxx ‖1 {argmaxaQπ(x, a)} − π(·|x)‖1,

∆Aπ
′

π = maxx,x′

∣∣∣Aπ′

π (x)−Aπ′

π (x′)
∣∣∣, and α′ = (1 −

γ)Ag/(γmπ̃∆Agπ̃π̃). Pirotta et al. (2013) improve the
theoretical analysis of Kakade and Langford (2002)
and show that if α′ ≤ 1 and we update the pol-
icy according to (10) with the choice of mixture
coefficient α′, the policy improvement is at least
A2
g/(2γmπ̃∆Agπ̃π̃). Although this improves upon CPI,

estimating mπ̃ and α′ is computationally hard in large
state problems. Pirotta et al. (2013) also propose a
multi-parameter version that uses a different value of
α′ for each state, but the improvement over the sin-
gle parameter version is not shown and the method is
computationally expensive.

3 Experiments

We implemented the ILPI algorithm in Python and
tested its performance on three problems: two chain
walk problems and balancing an inverted pendulum.
The performance of the algorithm is compared with
the performance of CPI (Kakade and Langford, 2002).

Yasin Abbasi-Yadkori, Peter L. Bartlett, Stephen J. Wright

Figure 4: Performance of ILPI on chain walk bench-
mark (50 states). Each run is repeated 10 times and
mean and standard deviations are reported. ILPI finds
an optimal policy in less than 10 iterations.

3.1 Chain Walk Domains

We tested the performance of the algorithm on two
simple chain walk problems. (See Section 9.1 in
(Lagoudakis and Parr, 2003).) The first chain has 50
states and there are two actions (Left and Right) avail-
able in each state. An action moves the state in the
intended direction with probability 0.9, and moves the
states in the opposite direction with probability 0.1.
Reward is +1 in states 10 and 41, and is zero in other
states. The discount factor is 0.9.

Figure 4 shows the performance of the exact version of
ILPI algorithm on this benchmark. The initial policy
π1 is the uniform random policy that takes Left and
Right with equal probability. We chose s = 1/F (π1)
and b = 0.9 in the ILPI algorithm. Figure 4 shows that
the ILPI algorithm achieves the performance of the op-
timal policy in less than 10 iterations. In comparison,
the USPI algorithm of Pirotta et al. (2013) needs 274
iterations to achieve this performance.3 CPI exhibits
much slower progress (Pirotta et al., 2013).

The second chain has 4 states. The action set, discount
factor, and transition dynamics is the same as before.
Lagoudakis and Parr (2003) show that LSPI finds the
optimal policy in this problem, although Koller and
Parr (2000) show that an algorithm that is a com-
bination of LSTD and policy improvement oscillates
between the suboptimal policies RRRR and LLLL (al-
ways going to the right and always going to the left).

Figure 5 shows the performance of five versions of ILPI
algorithm on this benchmark. The initial policy π̃

3The value of optimal policy that we find is slightly
different than the value reported by Pirotta et al. (2013).

Figure 5: Performance of ILPI on chain walk bench-
mark with 4 states. 95% confidence intervals are
shown for approximate algorithms.

is always the uniform random policy that takes Left
and Right with equal probability. The first three ver-
sions (shown by blue circles, stars, and red circles), use
si = 1/F (πi), si = 1/(γmaxx Vπi(x)), and s = 1/(γb),
respectively, and value functions Vπ̃ are computed ex-
actly. Notice that the first two versions change si in
each iteration adaptively. The fourth version (shown
by triangles), uses s = 1/(γb). Value functions are
estimated by averaging over 4 roll-outs of length 20.
Other quantities (ν and Q̂π̃) are also estimated by av-
eraging over 4 samples. The last version (shown by
the pink line) uses only one roll-out to estimate a
quantity. This last version fails to improve the ini-
tial policy (apparently due to large estimation errors).
We also show the performance of the CPI algorithm,
which improves the policies very slowly. Pirotta et al.
(2013) show that their algorithms find a near opti-
mal policy in 49 iterations, however as discussed in
Section 2.3, these approximate algorithms use a quan-
tity mπ = maxx |1 {argmaxaQπ(x, a)} − π(.|x)| and
having access to such a quantity for an approximate
algorithm is questionable.

We make a few observations. First, all versions of the
exact ILPI algorithm are faster than CPI. Second, us-
ing roll-outs to estimate value functions are sufficient
to improve policies, however, the number of roll-outs
should be sufficiently large so that estimation errors
become small.

3.2 Inverted Pendulum

The problem is to balance an inverted pendulum at the
upright position by applying horizontal forces to the
cart that the pendulum is attached to. The length and
mass of the pendulum are unknown to the learner. The
actions are left force (-50N), right force (50N), or no
force (0N). A uniform perturbation in [-10,10] is added
to the action. The state vector consists of the vertical

A Fast and Reliable Policy Improvement Algorithm

(a) Performance of ILPI (s = 1
γb

). (b) Performance of AILPI. (c) Performance of ILPI (s = 100).

Figure 6: Performance of ILPI and AILPI on inverted pendulum benchmark. 95% confidence intervals are shown.

angle θ and the angular velocity θ̇ of the pendulum.
Given action a, the state evolves according to

θ̈ =
9.8 sin(θ)− αml(θ̇)2 sin(2θ)/2− α cos(θ)a

4l/3− αml cos2(θ)
.

Here, m = 2kg is the mass of the pendulum, M = 8kg
is the mass of the cart, l = 0.5m is the length of the
pendulum, and α = 1/(m + M). The simulation step
is 0.1 seconds. The objective is to keep the angle in
[−π/2, π/2]. An episode ends when the angle of the
pendulum is outside this interval or when the episode
exceeds 3000 steps.

We tested the performance of the iterative policy im-
provement algorithm on this problem. We used 10
basis functions to estimate value of policies:

Ψ(x) = (1, exp(−‖x− p1‖
2

2
), . . . , exp(−‖x− p9‖

2

2
))> ,

where {p1, . . . , p9} = {−π/4, 0, π/4}×{−1, 0,+1}. To
estimate value of policy πi, we collected data by run-
ning πi for 100 episodes. Then we used this data and
estimated Vπi by an approximate value iteration (AVI)
algorithm (using the additional trick that we intro-
duced at the end of Section 2). The number of itera-
tions of AVI is 100. We performed 20 policy improve-
ments (so I = 20 in Figure 2). We chose γ = 0.95,
b = 0.9, and s = 1/(γb) in the ILPI algorithm. Fig-
ure 6(a) shows the performance of the ILPI algorithm.
The CPI algorithm exhibits very slow progress; even
after 100 iterations, the number of steps is less than
15.

The performance of the ILPI algorithm can be signif-
icantly improved by using larger s. Because the state
space is continuous, calculating maxx V̂πi or F (πi) is
not easy. Instead, we run the AILPI algorithm that
adaptively updates s. Figure 6(b) shows performance
of AILPI with initial s = 20. We choose ε = 0.2 and
100 episodes are used for value estimation. Figure 6(c)
shows that ILPI with fixed s = 100 finds the optimal
policy in 2 iterations.

4 Conclusions

We proposed a policy iteration algorithm that is
guaranteed to improve the performance of the initial
stochastic policy. We showed that the theoretical im-
provement is bigger than that of Conservative Policy
Iteration algorithm. Our theorem has two advantages
compared with the guarantees that are known for CPI:
First, the mixture coefficients are state-dependent and
because of this, our improvement has the form of the
expectation of quadratics while the improvement of
CPI has the form of the quadratic of an expectation.
Second, our theorem allows for much bigger steps to-
wards the greedy policy, hence faster convergence. Our
experiments are consistent with these theoretical ad-
vantages.

Acknowledgements

We gratefully acknowledge the support of the Aus-
tralian Research Council through an Australian Lau-
reate Fellowship (FL110100281) and through the Aus-
tralian Research Council Centre of Excellence for
Mathematical and Statistical Frontiers (ACEMS).

Yasin Abbasi-Yadkori, Peter L. Bartlett, Stephen J. Wright

References

D. P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Program-
ming. Athena Scientific, 1996.

D. P. de Farias and B. Van Roy. The linear programming
approach to approximate dynamic programming. Oper-
ations Research, 51, 2003.

S. Kakade and J. Langford. Approximately optimal ap-
proximate reinforcement learning. In ICML, 2002.

D. Koller and R. Parr. Policy iteration for factored MDPs.
In UAI, 2000.

M. G. Lagoudakis and R. Parr. Least-squares policy iter-
ation. JMLR, 4:1107–1149, 2003.

M. Pirotta, M. Restelli, A. Pecorino, and D. Calandriello.
Safe policy iteration. In ICML, 2013.

B. Scherrer. Approximate policy iteration schemes: A com-
parison. In ICML, 2014.

R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. Bradford Book. MIT Press, 1998.

P. S. Thomas, G. Theocharous, and M. Ghavamzadeh.
High confidence policy improvement. In ICML, 2015.

A Fast and Reliable Policy Improvement Algorithm

A Derivation of the Quadratic Form

Proof of Lemma 3. Consider function h : R→ R,

h(w) = c>V̂π̃w + v>π̂,c(Lπw(V̂π̃w)− V̂π̃w) .

For a scalar w, define Q̂π̃(x, a, w) = r(x) + γw(P(x,a)V̂π̃). Substituting for the Bellman operator Lπw (see
Section 1.1), we obtain

h(w) = c>V̂π̃w − v>π̂,cV̂π̃w +
∑
x

vπ̂,c(x)
∑
a

ν(a|x)
(

1 + Q̂π̃(x, a, w)−Eν(.|x)Q̂π̃(x, ., w)
)
Q̂π̃(x, a, w) .

Because Q̂π̃(x, a, w) = r(x)+γwP(x,a)V̂π̃, h is quadratic in w, so we can write it as h(w) = (1/2)w>Bw+g>w+f
for some choice of parameters B, g, and f . We have that

Eν(.|x)Q̂π̃(x, ., w) =
∑
a

ν(a|x)Q̂π̃(x, a, w)

=
∑
a

ν(a|x)(r(x) + γwP(x,a)V̂π̃)

= r(x) + γwEν(.|x)(PV̂π̃) .

Also, we have

Eν(.|x)Q̂
2
π̃(x, ., w) =

∑
a

ν(a|x)(Q̂π̃(x, a, w))2

=
∑
a

ν(a|x)(r(x) + γwP(x,a)V̂π̃)2

=
∑
a

ν(a|x)
(
r(x)2 + γ2w2(P(x,a)V̂π̃)2 + 2γwr(x)P(x,a)V̂π̃

)
= r(x)2 + 2γwr(x)Eν(.|x)(PV̂π̃) + γ2w2Eν(.|x)(PV̂π̃)2 .

Thus,

Varν(.|x)Q̂π̃(x, ., w) = Eν(.|x)Q̂
2
π̃(x, ., w)− (Eν(.|x)Q̂π̃(x, ., w))2

= r(x)2 + 2γwr(x)Eν(.|x)(PV̂π̃) + γ2w2Eν(.|x)(PV̂π̃)2

− r(x)2 − γ2w2(Eν(.|x)(PV̂π̃))2 − 2γwr(x)Eν(.|x)(PV̂π̃)

= γ2w2Varν(.|x)(PV̂π̃) .

Further, we have that

h(w)− c>V̂π̃w + v>π̂,cV̂π̃w =
∑
x

vπ̂,c(x)
∑
a

ν(a|x)
(

1 + Q̂π̃(x, a, w)−Eν(.|x)Q̂π̃(x, ., w)
)
Q̂π̃(x, a, w)

=
∑
x

vπ̂,c(x)
∑
a

ν(a|x)
(
Q̂π̃(x, a, w) + (Q̂π̃(x, a, w))2 − Q̂π̃(x, a, w)Eν(.|x)Q̂π̃(x, ., w)

)
=
∑
x

vπ̂,c(x)
(
Eν(.|x)Q̂π̃(x, ., w) + Eν(.|x)Q̂π̃(x, ., w)2 − (Eν(.|x)Q̂π̃(x, ., w))2

)
=
∑
x

vπ̂,c(x)Eν(.|x)Q̂π̃(x, ., w) +
∑
x

vπ̂,c(x)Varν(.|x)Q̂π̃(x, ., w) ,

and therefore

h(w) = c>V̂π̃w +
∑
x

vπ̂,c(x)Eν(.|x)Q̂π̃(x, ., w) +
∑
x

vπ̂,c(x)Varν(.|x)Q̂π̃(x, ., w)− v>π̂,cV̂π̃w ,

or alternatively,

h(w) = v>π̂,cr + (c>V̂π̃ − v>π̂,cV̂π̃ + γEvπ̂,c(P
ν V̂π̃))w + w2

∑
x

vπ̂,c(x)Varν(.|x)Q̂π̃(x, .) .

Yasin Abbasi-Yadkori, Peter L. Bartlett, Stephen J. Wright

We therefore obtain

f = v>π̂,cr ,

g = c>V̂π̃ − v>π̂,cV̂π̃ + γEvπ̂,c(P
ν V̂π̃) ,

B = 2
∑
x

vπ̂,c(x)Varν(.|x)Q̂π̃(x, .) .

	Introduction
	Notation

	Algorithm
	Analysis
	Choosing s
	Comparison with Conservative Policy Iteration

	Experiments
	Chain Walk Domains
	Inverted Pendulum

	Conclusions
	Derivation of the Quadratic Form

